Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation.

نویسندگان

  • D F Nathan
  • M H Vos
  • S Lindquist
چکیده

Hsp90 functions in a multicomponent chaperone system to promote the maturation and maintenance of a diverse, but specific, set of target proteins that play key roles in the regulation of cell growth and development. To identify additional components of the Hsp90 chaperone system and its targets, we searched for multicopy suppressors of various temperature-sensitive mutations in the yeast Hsp90 gene, HSP82. Three suppressors were isolated for one Hsp90 mutant (glutamate --> lysine at amino acid 381). Each exhibited a unique, allele-specific pattern of suppression with other Hsp90 mutants and had unique structural and biological properties. SSF1 is a member of an essential gene family and functions in the response to mating pheromones. CNS1 is an essential gene that encodes a component of the Hsp90 chaperone machinery. The role of HCH1 is unknown; its sequence has no strong homology to any protein of known function. SSF1 and CNS1 were weak suppressors, whereas HCH1 restored wild-type growth rates at all temperatures tested to cells expressing the E381K mutant. Overexpression of CNS1 or HCH1, but not SSF1, enhanced the maturation of a heterologous Hsp90 target protein, p60(v-src). These results suggest that like Cns1p, Hch1p is a general modulator of Hsp90 chaperone functions, whereas Ssf1p likely is either an Hsp90 target protein or functions in the same pathway as an Hsp90 target protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells.

Saccharomyces cerevisiae harbors two cyclophilin 40-type enzymes, Cpr6 and Cpr7, which are components of the Hsp90 molecular chaperone machinery. Cpr7 is required for normal growth and is required for maximal activity of heterologous Hsp90-dependent substrates, including glucocorticoid receptor (GR) and the oncogenic tyrosine kinase pp60(v-src). In addition, it has recently been shown that Cpr7...

متن کامل

The Co-Chaperone Hch1 Regulates Hsp90 Function Differently than Its Homologue Aha1 and Confers Sensitivity to Yeast to the Hsp90 Inhibitor NVP-AUY922

Hsp90 is a dimeric ATPase responsible for the activation or maturation of a specific set of substrate proteins termed 'clients'. This molecular chaperone acts in the context of a structurally dynamic and highly regulated cycle involving ATP, co-chaperone proteins and clients. Co-chaperone proteins regulate conformational transitions that may be impaired in mutant forms of Hsp90. We report here ...

متن کامل

Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone.

The ATP-dependent molecular chaperone Hsp90 is an essential and abundant stress protein in the eukaryotic cytosol that cooperates with a cohort of cofactors/cochaperones to fulfill its cellular tasks. We have identified Aha1 (activator of Hsp90 ATPase) and its relative Hch1 (high copy Hsp90 suppressor) as binding partners of Hsp90 in Saccharomyces cerevisiae. By using genetic and biochemical ap...

متن کامل

Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae.

Heat-shock protein 90 (Hsp90) of Saccharomyces cerevisiae is an abundant essential eukaryotic molecular chaperone involved in the activation and stabilization of client proteins, including several transcription factors and oncogenic kinases. Hsp90 undergoes a complex series of conformational changes and interacts with partner co-chaperones such as Sba1, Cpr6, Cpr7, and Cns1 as it binds and hydr...

متن کامل

Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 1999